Sequentially Vapor-Grown Hybrid Perovskite for Planar Heterojunction Solar Cells
نویسندگان
چکیده
High-quality and reproducible perovskite layer fabrication routes are essential for the implementation of efficient planar solar cells. Here, we introduce a sequential vapor-processing route based on physical vacuum evaporation of a PbCl2 layer followed by chemical reaction with methyl-ammonium iodide vapor. The demonstrated vapor-grown perovskite layers show compact, pinhole-free, and uniform microstructure with the average grain size of ~ 320 nm. Planar heterojunction perovskite solar cells are fabricated using TiO2 and spiro-OMeTAD charge transporting layers in regular n-i-p form. The devices exhibit the best efficiency of 11.5% with small deviation indicating the high uniformity and reproducibility of the perovskite layers formed by this route.
منابع مشابه
Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?a)
Articles you may be interested in Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell Appl. High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free per...
متن کاملTitanium dioxide/silicon hole-blocking selective contact to enable double- heterojunction crystalline silicon-based solar cell
Articles you may be interested in High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer Carrier recombination losses in inverted polymer: Fullerene solar cells with ZnO hole-blocking layer from transient photovoltage and impedance spectroscopy techniques High efficiency double heterojunction polymer photovoltaic cells u...
متن کاملPlanar heterojunction perovskite solar cells via vapor-assisted solution process.
Hybrid organic/inorganic perovskites (e.g., CH3NH3PbI3) as light absorbers are promising players in the field of third-generation photovoltaics. Here we demonstrate a low-temperature vapor-assisted solution process to construct polycrystalline perovskite thin films with full surface coverage, small surface roughness, and grain size up to microscale. Solar cells based on the as-prepared films ac...
متن کاملRecent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells.
Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising next-generation solar cells due to their advantages of low-cost precursors, high power conversion efficiency (PCE) and easy of processing. In the past few years, the PCEs have climbed from a few to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits ambipolar sem...
متن کاملHigh voltage and efficient bilayer heterojunction solar cells based on an organic-inorganic hybrid perovskite absorber with a low-cost flexible substrate.
A low temperature (<100 °C), flexible solar cell based on an organic-inorganic hybrid CH3NH3PbI3 perovskite-fullerene planar heterojunction (PHJ) is successfully demonstrated. In this manuscript, we study the effects of energy level offset between a solar absorber (organic-inorganic hybrid CH3NH3PbI3 perovskite) and the selective contact materials on the photovoltaic behaviors of the planar org...
متن کامل